Auto-learning of SMTP TCP Transport-Layer Features for Spam and Abusive Message Detection

Georgios Kakavelakis, Robert Beverly, Joel Young

Center for Measurement and Analysis of Network Data
Naval Postgraduate School, Dept. Computer Science
{gkakavel, rbeverly, jdyoung}@cmand.org
December 8, 2011

USENIX LISA 2011
Outline

1. Motivation
2. Detecting Bot-Generated Spam
3. SpamFlow Architecture
4. SpamFlow Results
5. Conclusions
Background

- 2011Q3 MAAWG email metrics: 89% of email is abusive.
- Huge volumes of spam, spammers quickly adapt to defenses.
- Whether user, provider, or vendor, spam is still a problem!

Our Prior SpamFlow Work Asked:
- What is the transport (TCP/IP packet stream) character of spam?
- Are there differences between spam and ham flows?
- How to exploit differences in a way which spammers cannot easily evade?
Understanding SpamFlow

- Not looking at IP header (reputation)
- Not looking at data (content)
- SpamFlow: TCP stream, incl timing
- FINs, RSTs, Duplicates, OOO pkts, 3WHS timing, packet jitter, receive window, maximum idle time, etc. (20 features in total)
SpamFlow, previous work

“Exploiting Transport-Level Characteristics of Spam” [BS08]:

- Utilize statistical machine learning methods
- Offline analysis
- Demonstrate $> 90\%$ accuracy, precision, recall (w/o content or reputation!)
- Correctly identify $\sim 78\%$ of false negatives from content filtering alone
Obstacles to Deployment

But ... Obstacles to Deployment:

- Lots of “plumbing,” i.e. exposing transport-features to higher layers
- Must be real-time
- Must be on-line
- Training a supervised learner

USENIX LISA 2011 Contributions:

- Tackle these deployment issues, did the “hard” work
- Built an opensource SpamFlow plugin for SpamAssassin
- (And show performance numbers – it really works!)
Outline

1. Motivation

2. Detecting Bot-Generated Spam

3. SpamFlow Architecture

4. SpamFlow Results

5. Conclusions
Why does SpamFlow work?

Two Observations on Spam

1. Low Penetration:
 - due to existing filters, user ambivalence
 - → huge volumes of spam

2. Sending Method:
 - Botnets, dialup, etc.
 - → Low asymmetric bandwidth, widely distributed
Detecting Bot-Generated Spam

Transport Behavior

Transport-Level Characteristics of Spam

Combining Observations: Low Penetration + Sending Methods

Volume + Methods + Economics \(\rightarrow\) link/host resource contention

Contention:

Contention manifests as TCP/IP loss, retransmission, reordering, jitter, flow control, etc. Particularly with the large buffers in consumer cable/DSL modems.
SMTP and TCP

Transmission Control Protocol:

mx.alice.com

EHLO mx.alice.com
MAIL FROM: alice@alice.com
DATA:
200 Hellow Alice
200 OK

mx.bob.com

Simple Mail Transport Protocol (SMTP) uses TCP for transport
Sequence of SMTP commands between Mail Transport Agents (MTAs)
Mail contents are packetized

How do Spam Connections Behave?
How do Spam Connections Behave?

...or, a quick look at `netstat`.

<table>
<thead>
<tr>
<th>RcvQ</th>
<th>SndQ</th>
<th>Local</th>
<th>Foreign Addr</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>92.47.129.89:49014</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>ppp83-237-106-114:29081</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25068</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>92.47.129.89:49014</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>ppp83-237-106-114:29084</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25068</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25069</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25070</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.227.123:25074</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>84.255.150.15:4232</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
<td>srv:25</td>
<td>222.123.147.41:50282</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>28</td>
<td>srv:25</td>
<td>adsl-pool-222.123:1720</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>31</td>
<td>srv:25</td>
<td>222.123.147.41:50152</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>srv:25</td>
<td>222.123.147.41:50889</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>srv:25</td>
<td>88.245.3.19:venus</td>
<td>LAST_ACK</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
<td>srv:25</td>
<td>78.184.155.70:1854</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>190-48-30-225.spe:50920</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>dsl.dynamic812132:48154</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>ip-85-160-91-16.e:48093</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>88.234.141.158:48389</td>
<td>FIN_WAIT1</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>srv:25</td>
<td>p5B0FBB5D.dip.t-d:11965</td>
<td>FIN_WAIT1</td>
</tr>
</tbody>
</table>

...
How do Spam Connections Behave?
...or, a quick look at `netstat`

<table>
<thead>
<tr>
<th>RcvQ</th>
<th>SndQ</th>
<th>Local</th>
<th>Foreign Addr</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>92.47.129.89:49014</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>ppp83-237-106-114.:29081</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.219.223:29084</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>88.200.219.223:25068</td>
<td>SYN_RECV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>srv:25</td>
<td>92.47.129.89:49014</td>
<td>SYN_RECV</td>
</tr>
</tbody>
</table>

TCP Stuck in States

- Stays in these states for minutes
- Half-open connections
- Remote MTAs that “disappear” mid-connection
- Remote MTAs that send FIN and disappear
What about RTT?
...building more intuition

Received: from vms044pub.verizon.net
From: "Dr. Beverly, MD" <b@ex.com>
Subject: thoughts
Dear Robert,
I hope you have had a great week!

Received: from unknown (59.9.86.75)
From: Erich Shoemaker <ried@ex.com>
Subject: Repl1ca for you
A T4g Heuer w4tch is a luxury statement on its own.
In Prest1ge Repl1cas, any T4g Heuer...
Outline

1. Motivation
2. Detecting Bot-Generated Spam
3. SpamFlow Architecture
4. SpamFlow Results
5. Conclusions
So... we built it.

Moving from research to production:

- MTA (postfix)
- SpamAssassin
- SF Plugin
- Classifier
- Model
- pcap
- SpamFlow
- SMTP Traffic

Features:
- score
- msgid
- prediction
Email traffic enters the system, MTA passes to SpamAssassin.
SpamAssassin Plugin

Architecture:

- SMTP Traffic
- MTA (postfix)
- pcap
- SpamFlow

Concurrently, SpamFlow daemon collects packets and produces per-flow features.
SpamAssassin Plugin

Architecture:

- MTA (postfix)
- SpamAssassin
- SF Plugin
- SpamFlow

SpamFlow plugin takes a msg ID.

SMTP Traffic

email
msgid
packets

Kakavelakis, Beverly, Young (NPS)
SpamAssassin Plugin

Architecture:

SpamFlow Architecture
Matching Emails and Flows

MTA (postfix) → Spam Assassin

SF Plugin

msgid

msgid

pcap

SpamFlow

SMTP Traffic

email

packets

Plugin communicates with SpamFlow daemon via XML-RPC to query for msg ID.
Mapping Traffic Flows to Email

Querying SpamFlow by Message ID:
- SF Plugin queries SpamFlow for traffic features corresponding to an email message
- How to determine which network traffic flow (and its packets) belongs to a given email message?

Mapping Traffic Flows to Email:
- **Message-ID**: RFC2822, §3.6.4: “Though optional, every message SHOULD have a Message-ID: field. The Message-ID: field contains a single unique message identifier.”
- **IP:Port Tuple**: Modify the MTA to record in the email header the ephemeral port of the remote MTA.
Mapping Traffic Flows to Email

Message-ID:
- Not guaranteed to be present
- Requires SpamFlow to perform Deep Packet Inspection
- Increases SpamFlow complexity to reassemble transport stream

IP:Port Tuple:
- Reliable, fast, simple
- Requires trivial change to MTA
- No DPI

SpamFlow:
We use **IP:Port** as the message identifier. Message-ID support planned in next version.
Mapping Traffic Flows to Email

Postfix:

```c
--- src/smtpd/smtpd.c.orig
+++ src/smtpd/smtpd.c
@@ -2807,9 +2807,9 @@
    if (!proxy || state->xforward.flags == 0) {
        out_fprintf(out_stream, REC_TYPE_NORM,
            "Received: from %s (%s [%s])",
-           state->helo_name ? state->helo_name : state->name,
+           state->name, state->rfc_addr, state->port);
```

Qmail:

```c
--- received.c.orig
+++ received.c
@@ -44,2 +44,3 @@
+char *remoteport;
+char *remotehost;
@@ -63,2 +64,5 @@
    safeput(qqt,remoteip);
+    remoteport = getenv("TCPREMOTEPORT");
+    qmail_puts(qqt,":");
+    safeput(qqt,remoteport);
    qmail_puts(qqt,")\n by ");
```
Architecture:

MTA (postfix) \(\rightarrow\) SpamAssassin

SpamFlow daemon returns the feature vector for traffic flow corresponding to email msg ID.

SMTP Traffic

SMTP

MTA

SpamAssassin Plugin

SpamFlow Architecture

Feature Vector

Kakavelakis, Beverly, Young (NPS) AUTO-LEARNING SMTP TCP FEATURES FOR SPAM LISA 2011 22 / 39
SpamAssassin Plugin

Architecture:

MTA (postfix) → Spam Assassin

SF Plugin

SpamFlow

Classifier

Traffic features passed to classifier.

SMTP Traffic

MTA (postfix)

email

msgid

features

msgid

features

MSGID

SMTP Traffic

pcap

packets

features
Architecture:

MTA (postfix) → Spam Assassin

SMTP Traffic

Classifier returns a prediction based on model.

SF Plugin

Classifier

Model

SMTP

msgid

score

features

msgid

prediction

features

packets

pcap

SpamFlow

Auto-learning SMTP TCP Features for Spam

Kakavelakis, Beverly, Young (NPS)
Example Tagged Email:

From Josephine@rsi.com Tue Feb 01 23:21:58 2011
Return-Path: <Josephine@rsi.com>
X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on ralph.rbeverly.net
X-Spam-Level: **
X-Spam-Status: No, score=2.9 required=5.0 tests=BAYES_40,HTML_MESSAGE,SPAMFLOW,
UNPARSEABLE_RELAY autolearn=no version=3.3.1
X-Spam-Spamflow-Tag: 3792891725:37689,12,10,0,0,0,1,1,0,53248,34.464852,0.162818,
120.441156,148.297699,51.891697,5840,48,1,64
X-Spam-SpamFlow-Predict: 1
Received: (qmail 30920 invoked from network); 1 Feb 2011 23:21:57 -0000
Received: from cm-static-18-226.telekabel.ba (77.239.18.226:37689)
Received: from vdhvjcvivjvbwyhxnsccvfwq (192.168.1.185) by bluebellgroup.com (77.239.18.226)
with Microsoft SMTP
Message-ID: <4D489025.504060@etisbew.com>
Date: Wed, 2 Feb 2011 00:20:48 +0100
From: Essie <Essie@hermes.com>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.12)
Training:

- Central problem in any supervised learner – how to train?
- Attacks and traffic features evolve
- Every installation environment is different, we observe very different traffic characteristics
- Can’t distribute “canned” or ”stock” trained traffic – how to customize per site?
SpamAssassin Scoring:

- Many rules, e.g.
 - In header, subject contains a gappy version of 'cialis':
    ```
    SUBJECT_DRUG_GAP_C: 2.108 0.989
    ```
 - In body, HTML font color similar to background:
    ```
    HTML_FONT_LOW_CONTRAST: 0.713 0.001
    ```
- Each rule hit contributes to final continuous message score

```
+99  5.0  0.0  -99
```

Spammy Good
Some messages are clearly spam (hit many rules), or clearly ham (very low score). Two random examples:

Non-Spammy Message (-1.5):

```
X-Spam-Status: No, score=-1.5 required=5.0
tests=BAYES_00,RP_MATCHES_RCVD,
    UNPARSEABLE_RELAY autolearn=ham version=3.3.2
```

Very Spammy Message (30.8):

```
From: Wellsfargo Internet Banking Alerts!!! <services@wellsfargo.com>
Subject: You Have 1 New Security Message Alerts!!!
X-Spam-Status: Yes, score=30.8 required=5.0
tests=BAYES_50,DATE_IN_PAST_96_XX,
    DOS_OF_TO_MX_IMAGE,FORGED_MUA_OUTLOOK,FORGED_OUTLOOK_HTML,FROM_MISSP_DKIM,
    FROM_MISSP_MSFT,FROM_MISSP_NO_TO,FROM_MISSP_USER,FSL_HELO_NON_FQDN_1,
    HELO_NO_DOMAIN,HTML_MESSAGE,MIME_HTML_ONLY,MISSING_HEADERS,NSL_RCVD_FROM_USER,
    RCVD_IN_BRBL_LASTEXT,RCVD_IN_XBL,RDNS_NONE,SHORT_HELO_AND_INLINE_IMAGE,
    TO_NO_BRKTS_DIRECT,TO_NO_BRKTS_MSFT,UNPARSEABLE_RELAY,
    XMAILER_MIMEOLE_OL_1ECD5 autolearn=no version=3.3.2
```
Auto-Learning:

- If other modalities (e.g. keywords, rule tests) indicate strong possibility of spam (high score) or ham (low score), use that as an *training example*.
- Incrementally build the model.
- Requires *no* human labeling or work!
1. Motivation
2. Detecting Bot-Generated Spam
3. SpamFlow Architecture
4. SpamFlow Results
5. Conclusions
January-March, 2011:

- Auto-learning thresholds based on spam distribution (normal, $\mu = 16.3, \delta = 7.7$)
- $\tau^+ = 16$ and $\tau^- = 1$
- Yields training of 2,685/5,510 (48.7%) spam and 267/416 (64.2%) ham messages
- Experiments using Naive Bayes, C4.5 decision trees, SVM
Auto-Learning Performance

Auto-Learning Accuracy ($\tau^+ = 16, \tau^- = 1$):

- Spam Prior
- Naive Bayes
- Decision Tree
- SVM
Auto-Learning Performance

Auto-Learning Accuracy ($\tau^+ = 30$, $\tau^- = 1$):

![Graph showing classification accuracy for different models]

- Spam Prior
- Naive Bayes
- Decision Tree
- SVM
Auto-Learning Performance

Auto-Learning F-Score ($\tau^+ = 16, \tau^- = 1$):

![Graph showing classification accuracy over incoming email number for Naive Bayes, Decision Tree, and SVM](image)

- **Naive Bayes**
- **Decision Tree**
- **SVM**

 Classification F-score

Incoming Email Number

0.0 0.2 0.4 0.6 0.8 1.0

0 10^0 10^1 10^2 10^3
SpamFlow Weight in Composite Score

- Currently a (configurable) fixed weight vote by SpamFlow that contributes to final score.
- We experimented with two weights.
- Working on optimizing and providing continuous weight depending on SpamFlow confidence.

Real-World Benefit

<table>
<thead>
<tr>
<th></th>
<th>tp</th>
<th>fp</th>
<th>tn</th>
<th>fn</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpamAssassin</td>
<td>5288</td>
<td>3</td>
<td>137</td>
<td>87</td>
<td>0.991</td>
</tr>
<tr>
<td>SpamFlow</td>
<td>5224</td>
<td>65</td>
<td>75</td>
<td>151</td>
<td>0.980</td>
</tr>
<tr>
<td>SA+SpamFlow(1)</td>
<td>5299</td>
<td>3</td>
<td>137</td>
<td>76</td>
<td>0.992</td>
</tr>
<tr>
<td>SA+SpamFlow(2)</td>
<td>5335</td>
<td>19</td>
<td>121</td>
<td>40</td>
<td>0.995</td>
</tr>
</tbody>
</table>

Kakavelakis, Beverly, Young (NPS) Auto-learning SMTP TCP Features for Spam LISA 2011 35 / 39
Outline

1 Motivation
2 Detecting Bot-Generated Spam
3 SpamFlow Architecture
4 SpamFlow Results
5 Conclusions
Conclusions

Current Research

Application to Other Domains:
- Attacks (automated) against web servers
- Can't rely on reputation/ports (as compared to SMTP)
- Scam-hosting infrastructure, Botnet CDNs (e.g. Canadian pharma, proxying, relaying, etc.)

Utilizing Transport Features:
- Adversarial TCP/IP stack to cause suspected bot to perform more work, contributing to the feedback loop such that transport features are exacerbated
- LISA 2011 poster with details, come see us!
SpamFlow Availability:

- Final testing phases
- Running in production at several installations
- autoconf’d, packaged, etc.
- January, 2012 release
- OpenSource license
- Tested with Postfix/Qmail and SpamAssassin
- Please contact us, or sign-up on mailing list for release updates

http://www.cmand.org/spamflow/
Thanks!

- Attacking spam at a **different layer**
- Created SpamFlow SpamAssassin plugin + architecture:
 - *On-line* and *real-time* transport-layer classification of live email messages on a production MTA.
 - Auto-learning of transport features to build model across different operating environments without human training.

Questions?

http://www.cmand.org/spamflow/